
Software Assurance
Objectives Hierarchy

SA Objectives Hierarchy – Top Level

Top Objective: Software is free from vulnerabilities,
either intentionally designed into the software or

accidentally inserted at anytime during its lifecycle, and
that the software functions in the intended manner

Context: Applies generically to V&V
and IV&V Efforts

Strategy: Assure that software is of high quality and that
it operates safely and reliably

Objective: Software
conforms to functional

intent and can be
assured to performs as

planned
(1)

Objective: Software
system is robust and
tolerant to failure, off
nominal conditions

(2)

Objective: Software does
not adversely impact

safety and contributes to
system safety

(3)

Objective: Software
is secure and

not vulnerable to
compromise from

internal or external
influences [placeholder]

(4)

SA Hierarchy
Sub – Obj.

1
Objective: Software conforms to functional intent and

can be assured to perform as planned
(1)

Context: Applies to full
lifecycle from systems

requirements to retirement

Strategy: Achieve a high level of
process maturity to ensure a robust

software product
(1.A)

Strategy: Identify and resolve faults
throughout the development process

(1.B)

Strategy: Verify and validate
functionality of software products

(1.C)

Context: V&V
includes reviews,

inspections,
testing, demos

Objective: Software
development process minimizes

insertion of errors
(1.A.1)

Objective: Faults, defects, or
other issues have been found

and resolved as part of the
development process

(1.B.1)

Objective: Remaining or known
issues have been closed out to

an acceptable level of risk
(1.B.2)

Objective: Software V&V
assures confidence in the
interim and end software

products
(1.C.1)

Strategy: Assure
a maintained,

comprehensive working
software development

process exists
(1.A.1.A)

Strategy: Assure software
development process

is followed and not
introducing errors

(1.A.1.B)

Strategy: Verify, validate
and inspect throughout
development to assure

problems are found
(1.B.1.A)

Strategy: Identify causes
of anomalies

(1.B.1.B)

Strategy: Resolve
problems and verify

solutions
(1.B.1.C)

Strategy: Track, address,
and trend issues via a
closed loop problem
resolution process

(1.B.2.A)

Strategy: Assure
a maintained,

comprehensive working
software V&V process

exists
(1.C.1.A)

Strategy: Assure software
V&V procedures are

complete and Nominal
and off nominal conditions

are addressed
(1.C.1.B)

Strategy: Assure
execution of V&V

planning
and procedures

(1.C.1.C)

Strategy: Assure software
product deliveries and

final as-built configuration
(1.C.1.D)

SA Hierarchy
Sub – Obj.

2
Objective: Software system is robust and tolerant to

failure, off nominal conditions
(2)

Strategy: Assure that software is developed in a robust manner, which
decreases/eliminates errors, and includes necessary design features to
prevent failures and off-nominal conditions from compromising ability to

accomplish mission objectives
(2.A)

Objective: Areas of weakness
are known and addressed to the

proper level
(2.A.1)

Objective: Has multiple means
of accomplishing functions that
are critical to mission objectives

(2.A.2)

Objective: Pathways for fault
propagation or combination
through software interfaces

are limited
(2.A.3)

Objective: Software is able
to recover from anomalies

affecting functionality
(2.A.4)

Strategy: Participate
in system analysis and

design to determine areas
of weakness, suggesting
where software design

can improve system
operability
(2.A.1.A)

Strategy: Identify, classify,
collect, trend and report

defect metrics
(2.A.1.B)

Strategy: Analyze metrics,
requirements, and design

to predict and address
problem areas

(2.A.1.C)

Strategy: Analyze for
software vulnerabilities
and recommend design

strategies
 (2.A.1.D)

Strategy: Determine
appropriate level for

functional redundancy
between system and

software
(2.A.2.A)

Strategy: Assure
appropriate software

functional redundancy
(2.A.2.B)

Strategy: Design in
appropriate software

architecture to meet and
maintain critical functions

(2.A.2.C)

Strategy: Design in
protective barriers to

prevent software from
propagating system

faults (system includes
software, hardware, and

human interface)
(2.A.3.A)

Strategy: Provide fault
management (detection,

isolation, recovery)
capabilities
(2.A.4.A)

SA Hierarchy
Sub – Obj.

3 Objective: Software does not adversely impact safety
and contributes to system safety

(3)

Strategy: Ensure a complete understanding of all operational
states of the system and the environment in which

it will operate
(3.A)

Strategy: Identify all software contributions to potential
hazards and eliminate, mitigate or control them to an

acceptable level
(3.B)

Objective: Software correctly reflects
and responds to environmental and

system states
(3.A.1)

Objective: Hazards caused or
contributed to by software are
eliminated or controlled to an

acceptable level
(3.B.1)

Objective: Software control of critical
functions is correctly designed and

implemented
(3.B.2)

Strategy: Work with systems
engineering and hardware to

ensure the software reflects the
system correctly

(3.A.1.A)

Strategy: Identify and support
the control and mitigation of

hazards caused or contributed to
by software

(3.B.1.A)

Strategy: Assure Non-critical
software does not impact safety-

critical software (residing on
same system, etc.)

(3.B.1.B)

Strategy: Assure the accuracy
and fidelity of software used
to simulate and verify critical

functions of the system
(3.B.1.C)

Strategy: Identify critical system
functions and ensure software

operates correctly
(3.B.2.A)

Strategy: Software used to
identify control and mitigate
system hazards operates

correctly
(3.B.2.B)

